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1 Introduction

It has been known from the early works [1–4] on the Wess-Zumino-Witten (WZW)

two-dimensional sigma models that the consistency of such quantum field theories imposes

restrictions on the possible values of the coupling constant k called the level. In the more

modern geometric language, the consistency requires the existence of a gerbe with connec-

tion over the target group G, with the curvature of the gerbe equal to the closed 3-form

Hk =
k

24π2
tr(g−1dg)3 (1.1)

on G [5–8]. Such a gerbe Gk exists if and only if the periods of Hk are integers. For simple

compact simply-connected groups, this occurs when k ∈ Z, assuming a proper normaliza-

tion of the bilinear ad-invariant form trXY on the Lie algebra g of G that appears on the

right hand side of eq. (1.1). For non-simply connected groups, the integrality of the periods

of Hk may impose more constraints on the level k. For example, the consistency of the

WZW model with the SO(3) target requires even levels. In [4], such restrictions were ana-

lyzed for all simple compact groups. Similar results were obtained in [9–12] via an algebraic

approach that interpreted the corresponding WZW models as “simple current orbifolds”.
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The gerbe Gk over G determines in a canonical way the “holonomy”

HGk
(ϕ) ∈ U(1)

defined for maps ϕ from a closed oriented surface Σ to G [5, 6, 8]. By definition, such

maps are the classical fields of the WZW model and the holonomy HGk
(ϕ) defines the

contribution of the Wess-Zumino action to the Feynman amplitude of the field ϕ. The

gerbe holonomy is invariant under the composition of fields with orientation-preserving

diffeomorphisms D of Σ:

HGk
(ϕ) = HGk

(ϕ ◦D). (1.2)

The other important property of the holonomy relating it to the curvature form of the

gerbe is the identity

HGk
(ϕ1) = HGk

(ϕ0) exp






2πi

∫

[0,1]×Σ

φ∗Hk






(1.3)

holding for 1-parameter families (i.e. homotopies) of classical fields ϕt = φ(t, ·) with φ :

[0, 1] × Σ → G.

As noticed in [13], the 2-dimensional WZW theory with simply-connected target groups

is closely related to the 3-dimensional Chern-Simons (CS) gauge theory of the same level k.

The existence of the CS theory with a non-simply connected gauge group imposes, however,

stronger restrictions on the level [14, 15]. For example, the SO(3) CS theory requires k

divisible by 4. The topological origin of the difference between the two restrictions has been

explained in [16]. In [17], the cohomological discussion of [16] was lifted to the geometric

level by showing that the CS theory with gauge group G requires an additional structure on

the gerbe Gk turning it into a “multiplicative gerbe”. The argument was completed in [18]

by including connections into the discussion of multiplicative structures. It was shown there

that a multiplicative gerbe Gk with connection permits to define unambiguously Feynman

amplitudes of the CS theory. More exactly, for every gauge connection A on a G-bundle

over a manifold M , it determines canonically a 2-gerbe K(A) over M (a geometric structure

of one degree higher) with curvature equal to the Pontryagin 4-form k
8π2 trF (A)2. Given a

map φ of a closed oriented 3-dimensional manifold into M , the CS Feynman amplitude of

the gauge field A is given as the holonomy of the 2-gerbe K(A) along φ [18]. It was also

shown in [18] that the multiplicative gerbe Gk determines canonically a central extension

of the loop group LG. The latter provides the extended chiral algebra of the corresponding

WZW theory whereas the WZW models corresponding to gerbes Gk without multiplicative

structure possess less extended or unextended chiral algebras. E.g. the chiral algebra of

the SO(3) WZW theory with k divisible by 4 is the provided by the central extension of

LSO(3) whereas for k even but not divisible by 4 it is given by the central extension of the

loop group LSU(2) [12].

For simple compact simply-connected groups G, the multiplicative structure on Gk
always exists and is unique up to isomorphism [18]. In the present paper, we address the

question of obstructions to the existence of a multiplicative structure on the gerbe Gk over
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simple compact non-simply connected groups G with fundamental group π1(G) = Z, as

well as the classification of such structures.

We show that the unique obstruction is provided by the U(1)-valued phases cϕ1,ϕ2 that

appear in the formula

HGk
(ϕ1ϕ2) = cϕ1,ϕ2 · HGk

(ϕ1) · HGk
(ϕ2) · e

2πi
R

Σ

(ϕ1×ϕ2)∗ωk

(1.4)

that relates the holonomy of the point-wise product of two group-valued fields ϕ1,2 : Σ → G

to the product of the individual holonomies. Above,

ωk =
k

8π2
tr(g−1

1 dg1)(g2dg
−1
2 ) (1.5)

is a 2-form on the double group G×G ≡ G2. That eq. (1.4) holds with cϕ1,ϕ2 ≡ 1 for simply

connected groups G is the content of the Polyakov-Wiegmann formula that for the first

time appeared (in an equivalent form) in [19], see also [20]. Its generalization to the non-

simply-connected groups G was obtained in [4] where the phases cϕ1,ϕ2 were computed for

the surface Σ of genus 1. In the latter case, they reduce to a certain U(1)-valued 2-cocycle c

on the group Z×Z ≡ Z2 that we shall call, accordingly, the FGK cocycle. Our main result

states that a multiplicative structure on the gerbe Gk over a non-simply-connected group

G exists if and only if the FGK cocycle is identically equal to 1. Under this condition, such

a structure on Gk is unique up to isomorphism. Thus, the computation of the FGK cocycle

for all simple compact Lie groups in [4] provides a complete classification of multiplicative

structures on the gerbes Gk.

The paper is organized as follows. In section 2, we recall that a multiplicative structure

on the gerbe Gk requires, in particular, that a certain gerbe with vanishing curvature (i.e.

flat) over the group G2, constructed from the gerbe Gk over G, be trivial. Isomorphism

classes of flat gerbes over G2 may be identified [6] with cohomology classes of U(1)-valued 2-

cocycles on the group G2. Consequently, such classes provide cohomological obstructions to

the triviality of flat gerbes. The corresponding cohomology group is calculated by standard

tools of homological algebra. On the other hand, a flat gerbe over G2 is trivial if and only if

its holonomy is trivial. For the flat gerbe mentioned above, the latter property is equivalent

to the strict Polyakov-Wiegmann formula without additional phases that may appear in

the general case (1.4). We explain in section 3 how such phases give rise to the FGK 2-

cocycle. In section 4, we recall from [4] the calculation of this cocycle and in section 5, we

clarify the relation between the cohomological obstruction classes and the FGK cocycles

by connecting both to bihomomorphisms in Hom(Z ⊗ Z,U(1)). Such bihomomorphisms

appeared in the algebraic approach [12, 21] to simple current orbifolds of the WZW models.

The following sections of the paper are devoted to a more thorough discussion of

multiplicative gerbes. In section 6, after some preparations, we formulate an abstract

definition of a multiplicative gerbe equivariant with respect to the action of a discrete group.

This is done in a way that allows to view multiplicative gerbes over non-simply-connected

groups G as multiplicative gerbes over their universal covers G̃ that are equivariant under

the deck action of Z = π1(G). Section 7 describes equivariant multiplicative gerbes in terms
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of local data. The local description permits an analysis of obstructions to the existence of

equivariant multiplicative gerbes that we perform in section 8. We show that in the case

of multiplicative gerbes over the group G̃ equivariant under the deck action of Z, the only

obstructions that may be non-trivial belong to the cohomology groups H3(Z,U(1)) and

H2(Z2,U(1)). The first one obstructs the existence of the gerbe Gk over the group G = G̃/Z

and was studied in detail in [22]. The second one in H2(Z2,U(1)) is the cohomological

obstruction, mentioned above, to the existence of a multiplicative structure on the gerbe Gk.

Its triviality is equivalent to the triviality of the FGK 2-cocycle. Finally, in section 9, we

discuss equivalences of equivariant multiplicative gerbes and prove that all multiplicative

structures on the fixed gerbe Gk are isomorphic. Conclusions summarize the results of the

paper and discuss perspectives for the further work.
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2 Cohomological obstructions

The principal geometric objects that we shall deal with in this paper are hermitian bundle

gerbes with unitary connection over a manifold M [23, 24], called below “gerbes” for short.

The curvature of a gerbe is a closed 3-form over M . Gerbes over M form a 2-category [25]

with objects, 1-morphisms between objects (called also “stable morphisms” or simply

“morphisms”) and 2-morphisms between 1-morphisms, see also section 2.1 of [26]. One

may define tensor product of gerbes, their duals and their pullbacks. The isomorphism

classes of flat gerbes form a group that may be naturally identified with the cohomology

group H2(M,U(1)) [6, 8]. We shall study gerbes, equipped with additional structures,

over Lie groups.

Let G̃ be a simple, compact, connected and simply-connected Lie group and let Z be

a subgroup of its center: Z ⊂ Z(G̃). The possible cases are Z = ZN for some N ≥ 1

or Z = Z
2
2. The non-cyclic case occurs for Z = Z(Spin(4r)). More complicated discrete

Abelian groups appear if one admits non-simple groups G̃ that will not be discussed here.

We shall consider the quotient Lie groups G = G̃/Z that are non-simply connected for

non-trivial subgroups Z since π1(G) = Z. The deck action of Z on G̃ may be identified

with its action by the group multiplication. Eq. (1.1) defines closed bi-invariant 3-forms

Hk on G that pull back to 3-forms H̃k on G̃ given by the same formula.

Let Gk be a gerbe with curvature Hk over G. Such a gerbe exists if and only if the

3-form Hk is integral (i.e. has integral 3-periods). The normalization in eq. (1.1) is chosen

so that this happens for k ∈ Z if the subgroup Z is trivial but only for certain levels k ∈ Z

for non-trivial Z. Gerbes Gk, when they exist, are unique up to isomorphism except for G =

Spin(4r)/Z2
2 = SO(4r)/Z2 where, for each k ∈ 2Z if r is odd and for each k ∈ Z if r is even,

there are two isomorphism classes of gerbes with curvature Hk [22]. As already mentioned

– 4 –
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in the Introduction, gerbes Gk are employed in the definition of Feynman amplitudes in

the Wess-Zumino-Witten (WZW) sigma models with target groups G, see also [6–8].

We shall use the notion of a multiplicative gerbe over Lie groups in the version that

appeared in [18] as a refinement of the concept introduced in [17]. A multiplicative gerbe

may be viewed as an ordinary gerbe over a Lie group equipped with a multiplicative

structure. The latter assures the compatibility of the gerbe with the group multiplication.

As explained in [17] and [18], the gerbe Gk over group G equipped with a multiplicative

structure canonically determines Feynman amplitudes in the CS theory with gauge group

G. A precise definition of a multiplicative gerbe may be found in section 6 below. Here,

we shall only briefly elucidate this notion. First, let us remark that the curvature form Hk

of the gerbe Gk satisfies the identity

m∗Hk = p∗1Hk + p∗2Hk + dωk, (2.1)

where m : G2 → G is the group multiplication, p1,2 : G2 → G are the projections and the

2-form ωk on G2 is given by eq. (1.5). Explicitly, the relation (2.1) boils down to equality

tr((g1g2)−1d(g1g2))3 = tr(g−1
1 dg1)3 + tr(g−1

2 dg2)3 + 3dtr(g−1
1 dg1)(g2dg

−1
2 ) (2.2)

that is straightforward to check. A multiplicative structure over the gerbe Gk realizes a

lift of the relation (2.1) from the level of curvature 3-forms to the level of gerbes. More

precisely, it involves an isomorphism

m∗Gk ∼= p∗1Gk ⊗ p∗2Gk ⊗ Iωk
(2.3)

between gerbes over G2, where Iωk
is a gerbe over G2 which is trivial except for the

global curving 2-form ωk and the corresponding curvature 3-form dωk. The remaining

part of the definition of a multiplicative gerbe consists of certain associativity data for the

isomorphism (2.3).

The existence of an isomorphism (2.3) is equivalent to the statement that the isomor-

phism class κ of the flat gerbe

m∗Gk ⊗ p∗1G
∗
k ⊗ p∗2G

∗
k ⊗ I−ωk

≡ Kk (2.4)

on G2 is trivial. Above, G∗
k denotes the gerbe dual to Gk with the inverse holonomy and op-

posite curvature. The isomorphism classes of flat gerbes on G2 form the cohomology group

H2(G2,U(1)) so that the isomorphism (2.3) exists if and only if the class κ ∈ H2(G2,U(1))

associated to Kk vanishes. In other words, κ is the cohomological obstruction to the exis-

tence of the isomorphism (2.3).

We have to understand the structure of the obstruction cohomology group

H2(G2,U(1)) for the Lie groups G = G̃/Z. The lowest homology groups (with integer

coefficients) for simple, compact, connected and simply-connected Lie group G̃ are

H0(G̃) = Z, H1(G̃) = 0 = H2(G̃). (2.5)

Since Z acts properly on G̃, it follows (see e.g. Corollary 7.3 of [27]) that

Hn(G) = Hn(Z) for n = 0, 1, 2, (2.6)

– 5 –
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where on the right hand side appear the group-homology groups [27, 28]. One has

H0(Z) = Z, H1(Z) = Z, H2(Z) =

{

0 if Z = ZN ,

Z2 if Z = Z
2
2.

(2.7)

The Universal Coefficients Theorem implies that

H2(G,U(1)) ∼= Hom(H2(G),U(1)) ∼= Hom(H2(Z),U(1)) ∼= H2(Z,U(1)), (2.8)

where, in the last member, U(1) is considered as a trivial Z-module. This gives the result

H2(G,U(1)) ∼=

{

0 if Z = ZN ,

Z2 if Z = Z
2
2

(2.9)

discussed in detail in [4].

Low homology and cohomology of the product groups G̃2 and G2 can be computed

similarly. One has:

H0(G̃2) = Z, H1(G̃2) = 0 = H2(G̃2). (2.10)

and

Hn(G2) ∼= Hn(Z2) for n = 0, 1, 2, (2.11)

and, from the Universal Coefficients theorem,

H2(G2,U(1)) ∼= H2(Z2,U(1)), (2.12)

where U(1) is considered as a trivial Z2-module. The groups Hn(G2) ∼= Hn(Z2) for n ≤ 2

are easy to compute from the Künneth formula:

H0(G2) ∼= Z,

H1(G2) ∼= H1(G) ⊕H1(G) ∼= Z2, (2.13)

H2(G2) ∼= H2(G) ⊕H1(G) ⊗H1(G) ⊕H2(G). (2.14)

More precisely, in the last isomorphism, the injection of the two components H2(G) into

H2(G2) is induced by the embeddings G ∋ g 7→ (g, 1) ∈ G2 and G ∋ g 7→ (1, g) ∈ G2

whereas the injection of H1(G) ⊗ H1(G) is given by the cross product. Eqs. (2.6), (2.7)

and (2.14) give then the result:

H2(G2) ∼=

{

ZN if Z = ZN ,

Z
6
2 if Z = Z

2
2.

(2.15)

The Universal Coefficients Theorem implies now that

H2(G2,U(1)) ∼= Hom(H2(G2),U(1))

∼= Hom(H2(G) ⊕H1(G) ⊗H1(G) ⊕H2(G),U(1))

∼= H2(G,U(1)) ⊕ Hom(H1(G) ⊗H1(G),U(1)) ⊕H2(G,U(1))

∼=

{

ZN if Z = ZN ,

Z
6
2 if Z = Z

2
2.

– 6 –
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Eqs. (2.12), (2.6), (2.7) and (2.8) permit to rewrite the latter isomorphisms in terms of the

cohomology of finite groups:

H2(Z2,U(1)) ∼= H2(Z,U(1)) ⊕ Hom(Z ⊗ Z,U(1)) ⊕H2(Z,U(1)). (2.16)

Here, the injections of H2(Z,U(1)) into H2(Z2,U(1)) are induced by considering the U(1)-

valued 2-cocycles cZz,z′ on Z as 2-cocycles on Z2 according to the formulae

cZ
2

(z1,z2),(z′1,z
′
2)

= cZz1,z′1
or cZ

2

(z1,z2),(z′1,z
′
2)

= cZz2,z′2
, (2.17)

respectively, whereas the injection of the group Hom(Z ⊗ Z,U(1)) of bihomomorphisms

ζ : Z2 → U(1) into the cohomology group H2(Z2,U(1)) may be induced by setting

cZ
2

(z1,z2),(z′1,z
′
2)

= ζ(z1, z
′
2). (2.18)

The above information about the cohomology group H2(Z2,U(1)) ∼= H2(G2,U(1)) will be

used in the sequel.

3 Generalized Polyakov-Wiegmann formula and the FGK cocycle

Isomorphic gerbes have the same holonomy. The converse is also true over manifolds for

which H2(M,U(1)) = Hom(H2(M),U(1)) as is the case for groups G or G2 (this uses the

fact that H2(M) is spanned by images of closed oriented surfaces). The triviality up to

isomorphism of the gerbe Kk of eq. (2.4) is then equivalent to the triviality of its holonomy

HKk
(ϕ1 × ϕ2) = HGk

(ϕ1ϕ2) · HGk
(ϕ1)−1 · HGk

(ϕ2)−1 · e
−2πi

R

Σ

(ϕ1×ϕ2)∗ωk

= cϕ1,ϕ2 ∈ U(1) (3.1)

for any pair of maps ϕ1,2 : Σ → G, see eq. (1.4). Somewhat surprisingly, the general-

ized Polyakov-Wiegmann formula (1.4) leads to a different picture of obstructions to the

existence of an isomorphism (2.3) than the discussion in section 2. Namely, it induces

obstructions living in the group of U(1)-valued 2-cocycles on Z2 and not in the corre-

sponding cohomology group H2(Z2,U(1)) ∼= H2(G2,U(1)). Such obstruction 2-cocycles

may be nontrivial even if their cohomology class is trivial. Here is how this story goes.

1. First, if ϕ1,2,3 : Σ → G then the holonomy of HGk
(ϕ1ϕ2ϕ3) may be calculated in two

different ways. On the one hand,

HGk
(ϕ1ϕ2ϕ3) = cϕ1ϕ2,ϕ3 · HGk

(ϕ1ϕ2) · HGk
(ϕ3) · e

2πi
R

Σ

(ϕ1ϕ2×ϕ3)∗ωk

= cϕ1,ϕ2 · cϕ1ϕ2,ϕ3 · HGk
(ϕ1) · HGk

(ϕ2) · HGk
(ϕ3)

· e
2πi

R

Σ

[(ϕ1ϕ2×ϕ3)∗ωk+(ϕ1×ϕ2)∗ωk]
. (3.2)

On the other hand,

HGk
(ϕ1ϕ2ϕ3) = cϕ1,ϕ2ϕ3 · HGk

(ϕ1) · HGk
(ϕ2ϕ3) · e

2πi
R

Σ

(ϕ1×ϕ2ϕ3)∗ωk

= cϕ1,ϕ2ϕ3 · cϕ2,ϕ3 · HGk
(ϕ1) · HGk

(ϕ2) · HGk
(ϕ3)

· e
2πi

R

Σ

[(ϕ1×ϕ2ϕ3)∗ωk+(ϕ2×ϕ3)∗ωk]
. (3.3)

– 7 –
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Figure 1. Genus 3 surface with a marking; broken red lines indicate the contours of its version

with pinched off handles.

Since a direct calculation shows that on G3,

(m ◦ p12 × Id)∗ωk + p∗12ωk = (Id×m ◦ p23)∗ωk + p∗23ωk (3.4)

with the natural notation for the projections pij : G3 → G2, we infer that the exponential

terms on the right hand side of eqs. (3.2) and (3.3) coincide and, consequently, that

cϕ1,ϕ2 · cϕ1ϕ2,ϕ3 = cϕ1,ϕ2ϕ3 · cϕ2,ϕ3, (3.5)

i.e. that cϕ1,ϕ2 is a U(1)-valued 2-cocycle on the group of maps ϕ : Σ → G.

2. Second, cϕ1,ϕ2 depends only on the homotopy classes of ϕ1 and ϕ2. Indeed, if ϕ1

is homotopic to ϕ′
1 and ϕ2 is homotopic to ϕ′

2, with φ1,2 : [0, 1] × Σ → G being the

corresponding homotopies, then by eq. (1.3),

HGk
(ϕ′

1) = HGk
(ϕ1) · e

2πi
R

[0,1]×Σ

φ∗1Hk

HGk
(ϕ′

2) = HGk
(ϕ2) · e

2πi
R

[0,1]×Σ

φ∗2Hk

HGk
(ϕ′

1ϕ
′
2) = HGk

(ϕ1ϕ2) · e
2πi

R

[0,1]×Σ

(φ1φ2)∗Hk

.

Using the relation (2.1), we infer that

cϕ′
1,ϕ

′
2

= cϕ1,ϕ2 ≡ c[ϕ1],[ϕ2],

where [ϕ] denotes the homotopy class of the map ϕ : Σ → G. Such homotopy classes are in

one-to-one correspondence with elements of Z2γ , where γ is the genus of Σ. The element

(z1, z2, . . . , z2γ−1, z2γ) corresponding to [ϕ] is given by the holonomies

z2i−1 = P e

R

ai

Aϕ

, z2i = P e

R

bi

Aϕ

, (3.6)

of the non-Abelian flat gauge field Aϕ = ϕ∗(g−1dg) on Σ. Above, P stands for the path-

ordering (from left to right) along paths ai, bi, i = 1, . . . , γ, that generate a fixed marking

of Σ, see figure 1. Note that [ϕ1ϕ2] = [ϕ1][ϕ2], where on the right hand side the product

is taken in Z2γ . We infer that c[ϕ1],[ϕ2] is a U(1)-valued 2-cocycle on the finite group Z2γ .

– 8 –
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3. Third, it is easy to see from the definition of the 2-cocycle c[ϕ1],[ϕ2] that if [ϕ1] =

(z1, . . . , z2γ) and [ϕ2] = (z′1, . . . , z
′
2γ) then

c(z1,...,z2γ),(z′1,...,z
′
2γ) =

γ
∏

i=1

c(z2i−1,z2i),(z′2i−1,z
′
2i)
. (3.7)

In order to obtain this relation, just calculate c[ϕ1],[ϕ2] from the holonomy of the fields

defined on a family of surfaces Σ whose handles are pinched away from each other, see

figure 1. On the one hand, c[ϕ1],[ϕ2] is the same for all surfaces in the family because the

holonomies (3.6) are the same. On the other hand, since the fundamental group of G is

commutative, the holonomy of Aϕ around the pinched curves is trivial and one may take

fields that extend smoothly to the limiting surface with pinched handles giving rise the the

product expression on the right hand side. It is then enough to consider surface Σ of genus

1, i.e. the torus T
2 = S1 ×S1, leading to a U(1)-valued 2-cocycle c(z1,z2),(z′1,z′2) on the finite

group Z2, the FGK cocycle. Let us stress that it is the non-triviality of the FGK cocycle

c(z1,z2),(z′1,z′2) and not of its cohomology class in H2(Z2,U(1)), that obstructs the existence

of a multiplicative structure on the gerbe Gk over the group G = G̃/Z.

It is well known that 2-cocycles on a group are related to projective representations.

In particular, the FGK 2-cocycle c is related to a projective representation Ψ 7→ (z1,z2)Ψ of

Z2 in the space of quantum states of the group G̃ CS theory on the 3-manifold T
2×R [15].

This space is spanned by the characters of the central extension of the loop group LG̃. The

FGK 2-cocycle characterizes the projectivity of the representation:

(z1z′1,z2z
′
2)Ψ = c(z1,z2),(z′1,z′2)

(z1,z2)((z
′
1,z

′
2)Ψ).

If c ≡ 1 then the representation of Z2 is genuine rather than projective. In this case,

one may define the subspace of the Z2-invariant states which forms the space of quantum

states of the CS theory with the non-simply-connected group G = G̃/Z on the same

manifold T
2 × R. The subspace of the Z2-invariant states Ψ is spanned by the characters

of the central extension of the loop group LG that is determined by the corresponding

multiplicative gerbe. As already mentioned, such a central extension provides the extended

chiral algebra of the corresponding group G WZW model. In particular, when c ≡ 1, the

toroidal partition function of the group G WZW model is a diagonal combination of the

absolute values squared of the characters of the extended chiral algebra.

4 Calculation of the FGK cocycle

The calculation of the 2-cocycles c(z1,z2),(z′1,z′2) to which case eq. (3.7) reduces the general ex-

pression, has been done in ref. [4]. Let us recall (and slightly complete) the argument of [4].

We shall start from the cyclic case when Z = ZN with the generator ζ = e 2πiθ for

some θ 6= 0 in the coweight lattice P∨ of group G. Recall that the existence of a gerbe Gk
with curvature Hk over the group G = G̃/Z requires the integrality of Hk. As was shown

in [4], the latter is equivalent to the condition

1

2
kNtrθ2 ∈ Z (4.1)
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that selects the admissible levels k ∈ Z. To each pair (m,n) of integers, we may associate

a field configuration ϕm,n : T
2 → G on the two-dimensional torus T

2 such that

ϕm,n( e iσ1 , e iσ2) = e i(σ1mθ+σ2nθ). (4.2)

Note that the homotopy class of ϕm,n

[ϕm,n] = (ζm, ζn) ∈ Z2. (4.3)

Since ϕm,n takes values in the circle { e iσθ ∈ G|σ ∈ [0, 2π[} and all gerbes over S1 are

trivial up to isomorphism, it follows that

HGk
(ϕm,n) = 1. (4.4)

As a result,

c(ζm,ζn),(ζm′ ,ζn′ ) = e
− ik

4π

R

T2

tr(ϕ−1
mndϕmn)(ϕm′n′dϕ

−1
m′n′)

= e
− ik

4π

2π
R

0

2π
R

0

tr(mθdσ1+nθdσ2)(m′θdσ1+n′θdσ2)

= e πik(m′n−mn′)trθ2 ≡ c(m,n),(m′,n′). (4.5)

Note that the relation (4.1) implies directly that c(m,n),(m′,n′) depends only on the classes

modulo N of the integers m,n,m′, n′. Besides, c(m,n),(m′,n′) ≡ 1 if and only if

1
2
ktrθ2 ∈ Z.

Let us observe that in the particular case when N = 2 and ktrθ2 is an integer, one has:

c(m,n),(m′,n′) = e(m,n)e
−1
(m+n,m′+n′)e(m′,n′)

for e(m,n) = e πikmntrθ2 so that the FGK 2-cocycle is cohomologically trivial although it is

non-trivial if ktrθ2 is an odd integer as for Z = Z(SU(2)) at even levels not divisible by

4. This shows that the requirement of triviality of the FGK cocycle is, in general, strictly

stronger than the requirement of its cohomological triviality.

Consider now the case when Z = Z(Spin(4r)) = Z
2
2 and is generated by ζ1 = e 2πiθ1

and ζ2 = e 2πiθ2 for certain θ1, θ2 ∈ P∨. As was shown in [4], the integrality of the 3-form

Hk on G = Spin(4r)/Z2
2 imposes now the conditions

ktrθ2
1 , ktrθ2

2 , 2ktrθ1θ2 ∈ Z (4.6)

(ref. [4] considered an additional restriction that required that ktrθ1θ2 be integral; we drop

it here). An inspection shows that trθ1θ2 is always a half-integer and that trθ2
1 and trθ2

2

are integers when r is even and, say, the first one is a half-integer and the second one an

integer when r is odd. It follows that the gerbes Gk over Spin(4r)/Z2
2 exist for all k ∈ Z if

r is even and for all k ∈ 2Z if r is odd, as already indicated in section 2. Eq. (4.3) with

mθ standing now for m1θ1 + m2θ2 and nθ for n1θ1 + n2θ2 associates a field configuration
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ϕm,n : T
2 → G to a pair (m,n) of vectors in Z

2 with m = (m1,m2) and n = (n1, n2).

The relation (4.3) still hold with ζm ≡ ζm1
1 ζm2

2 and ζn ≡ ζn1
1 ζn2

2 . If the vectors m and

n are parallel, then ϕm,n takes values in a circle in G and, for dimensional reasons, the

identity (4.4) still holds. The integral homology group H2(G) ∼= H2(Z) ∼= Z2 is generated

by ϕ(1,0),(0,1) [4]. It is easy to see from the local expression for the gerbe holonomy that

HGk
(ϕ(1,0),(0,1))

2 = HGk
(ϕ(2,0),(0,1)) = (−1)k. (4.7)

The latter equality is obtained by noting that there exists a smooth map g̃ : D → G defined

on the unit disc D such that g̃(0) = 1 and g̃( e iσ1) = e 2iσ1θ1 so that g̃(t e iσ1θ1) e iσ2θ2

provides the homotopy between ϕ(0,0),(0,1) and ϕ(2,0),(0,1). The use of this homotopy leads

via eq. (1.3) to the left equality in (4.7) [4]. We infer that

HGk
(ϕ(1,0),(0,1)) = ± e πik/2.

Different choices of the sign correspond to the holonomy of gerbes Gk in two different

isomorphism classes. The invariance (1.2) of the gerbe holonomy under the orientation-

preserving diffeomorphisms of T
2 implies that

HGk
(ϕm,n) = HGk

(ϕm̃,ñ) if (m̃, ñ) =

(

a b

c d

)

(m,n) (4.8)

for

(

a b

c d

)

∈ SL(2,Z) (where m,n, m̃, ñ are treated as column vectors). Using this invari-

ance, it is easy to see that

HGk
(ϕm,n) =

(

± e πik/2
)m∧n

whenever the components of m and n are 0 or 1for m∧n = m1n2−m2n1. Employing similar

homotopies as before, one may check that this equation remains true for all m,n ∈ Z
2.

Finally, the definition (3.1) gives the result:

c(ζm,ζn),(ζm′ ,ζn′) =
(

± e πik/2
)m∧n′+m′∧n

e πiktr(m′θnθ−mθn′θ) ≡ c(m,n),(m′,n′). (4.9)

It is straightforward to verify directly using eqs. (4.6) that the right hand side depends

on the classes of m,n,m′, n′ in Z
2/2Z

2. The SL(2,Z) symmetry extends to the 2-cocycle

c(m,n),(m′,n′) implying that

c(m,n),(m′,n′) = c(m̃,ñ),(m̃′,ñ′)

if the pairs (m,n) and (m̃, ñ) are related as in (4.8). It is easy to check that c(m,n),(m′,n′) ≡ 1

if and only if the upper sign is chosen on the right hand side of eq. (4.9) and k ∈ 2Z if r is

even or k ∈ 4Z when r is odd. Note that the expression (4.9) for c(m,n),(m′,n′) encompasses

also the formula (4.5) if we set m ∧ n ≡ 0 for Z = ZN .

Summarizing, the obstruction FGK 2-cocycle c(m,n),(m′,n′) on Z2 is given by eq. (4.9).

We have included a table in section 10 listing those values of k for which the FGK cocycle

is trivial.
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5 FGK cocycle and the cohomological obstruction

The obstruction cohomology class κ ∈ H2(G2,U(1)) ∼= Hom(H2(G2),U(1)) that corre-

sponds to the isomorphism class of the flat gerbe Kk over G2 defined by (2.4) may be easily

described explicitly. Indeed, it assigns to fields ϕ1 × ϕ2 : Σ → G2 inducing the homology

classes [ϕ1 × ϕ2] ∈ H2(G2) their holonomy with respect to the gerbe Kk:

〈

[ϕ1 × ϕ2], κ
〉

= HKk
(ϕ1 × ϕ2) = cϕ1,ϕ2, (5.1)

see eq. (3.1). In order to describe κ, it is then enough to calculate cϕ1,ϕ2 for fields ϕ1,2 such

that [ϕ1 × ϕ2] generate H2(G2).

Let us first consider the case with Z = ZN . Here

H2(G2) ∼= H1(G) ⊗H1(G) ∼= ZN ,

see (2.14) and (2.15), with the first isomorphism given by the cross product. The group

H1(G) ∼= Z is composed of the homology classes of the maps

S1 ∋ e iσ 7−→ e iσmθ ∈ G

that correspond to elements ζm ∈ Z for ζ = e 2πiθ. Consequently, H2(G2) is composed of

the cross products of the latter classes. These are the homology classes of the maps

T
2 ∋

(

e iσ1 , e iσ2
)

7−→
(

e iσ1mθ, e iσ2nθ
)

∈ G2,

i.e. of ϕm,0 × ϕ0,n in the notation of eq. (4.2). Eqs. (5.1) and (4.5) give for the paring of

these classes with the cohomology class κ the result:

〈

[ϕm,0 × ϕ0,n], κ
〉

= cϕm,0,ϕ0,n
= e −πikmntrθ2.

The right hand side induces a bihomomorphism ξκ : Z2 → U(1),

ξκ(ζm, ζn) = e −πikmntrθ2 . (5.2)

The discussion of section 2 relating bihomomorphisms to the cohomology classes, see

eq. (2.18), permits to identify κ with the class in H2(Z2,U(1)) ∼= H2(G2,U(1)) gener-

ated by the 2-cocycle

χ(ζm,ζn),(ζm′ ,ζn′) = e −πikmn′trθ2

on the group Z2.

Let us pass now to the case with Z = Z
2
2. Here

H2(G2) ∼= H2(G) ⊕H1(G) ⊗H1(G) ⊕H2(G) ∼= Z
6
2,

see the results (2.14) and (2.15). The first (resp. second) copy of H2(G) ∼= Z2 injects into

H2(G2) to the homology classes of the fields ϕm,n × ϕ0,0 for m,n ∈ Z
2 (resp. of the fields

ϕ0,0 × ϕm,n). The holonomy of gerbe Kk is trivial along such fields so that

〈

[ϕm,n × ϕ0,0], κ
〉

= cϕmn,ϕ0,0 = 1 = cϕ0,0,ϕm,n =
〈

[ϕ0,0 × ϕm,n], κ
〉

.
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On the other hand, similarly as before, H1(G) ⊗H1(G) injects to the homology classes in

H2(G2) of the fields ϕm,0 × ϕ0,n so that

〈

[ϕm,0 × ϕ0,n], κ
〉

= cϕm,0,ϕ0,n
=
(

± e πik/2
)m∧n

e −πiktrmθnθ,

see eq. (4.9). Again, the right hand side induces a bihomomorphism ξκ : Z2 → U(1),

ξκ(ζm, ζn) =
(

± e πik/2
)m∧n

e −πiktrmθnθ. (5.3)

It permits to identify κ with the cohomology class in H2(Z2,U(1)) ∼= H2(G2,U(1)) gener-

ated by the 2-cocycle

χ(ζm,ζn),(ζm′ ,ζn′) =
(

± e πik/2
)m∧n′

e −πiktrmθn′θ

on Z2, see again eq. (2.18). Note that the formula (5.3) encompasses also the expres-

sion (5.2) if, as before, we set m ∧ n ≡ 0 for Z = ZN and that the bihomomorphisms ξκ
satisfy the relation

ξκ(ζm, ζm) = e −πiktr(mθ)2 . (5.4)

It is well known that the elements z ∈ Z correspond to simple currents Jz of the level

k WZW theory [9], i.e. to primary fields that induce under fusion with other primary

fields a permutation of the latter. The conformal weights ∆z of the primary fields Jz
satisfy the relation

∆ζm =
1

2
ktr(mθ)2mod1.

The conditions (4.1) for Z = ZN or (4.6) for Z = Z
2
2 are equivalent to the requirement

that the simple currents Jz for z ∈ Z be effective (in the terminology of [11]), i.e. that

Nz∆z ∈ Z for z ∈ Z

where Nz stands for the order of the element z. Eq. (5.4) becomes the identity

ξκ(z, z) = e −2πi∆z .

Bihomomorphisms with the above property on arbitrary groups of effective simple

currents have been studied in the context of simple-current orbifolds of conformal field

theories in [12]. In [21] they were called the Kreuzer-Schellekens (KS) bihomomorphisms.

Note that if

∆z ∈ Z for z ∈ Z (5.5)

then ξκ(z, z) = 1. Such bihomomorphisms are called alternating. They are in one-to-one

correspondence, see Lemma 3.16 of [21], with the cohomology classes in H2(Z,U(1)). The

latter group is trivial for Z = ZN and in this case the condition (5.5) assures the triviality

of the KS bihomomorphism ξκ. For Z = Z
2
2, however, H2(Z,U(1)) = Z2 and even if the

condition (5.5) is satisfied, the KS bihomomorphism ξκ may be non-trivial which indeed

happens for the choice of the gerbe Gk corresponding to the lower sign on the right hand

side of eq. (5.3).
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As we have shown, there is a close relation between the cohomology class κ obstructing

the existence of a stable isomorphism (2.3) and the FGK obstruction 2-cocycle c on Z2

obtained from the generalized Polyakov-Wiegmann formula. The cohomology class κ comes

from the KS bihomomorphism ξκ : Z2 → U(1) of eq. (5.3) via the embedding

Hom(Z ⊗ Z,U(1)) →֒ H2(Z2,U(1)) ∼= H2(G2,U(1)) (5.6)

with the first arrow mapping ξκ into the cohomology class of the 2-cocycle

χ(z1,z2),(z′1,z
′
2)

= ξκ(z1, z
′
2).

On the other hand, the FGK 2-cocycle on Z2 has the form

c(z1,z2),(z′1,z′2) = ξκ(z1, z
′
2)ξκ(z2, z

′
1)−1.

The triviality of the obstruction cohomology class κ generated by χκ must be equivalent

to the triviality of the KS bihomomorphism ξκ. This may be also checked by a direct

calculation. On the other hand, the triviality of the bihomomorphism ξκ is clearly equiv-

alent to that of the FGK 2-cocycle c. This establishes the equivalence of three different

presentations of the obstruction. Note, for example, that in the case with Z = Z2, the

bihomomorphism ξκ given by eq. (5.2) is non-trivial if ktrθ2 is an odd integer and the

corresponding 2-cocycle χ is cohomologically non-trivial whereas, as discussed above, the

FGK 2-cocycle c is non-trivial but cohomologically trivial.

6 Equivariant multiplicative gerbes

In this section we shall define multiplicative and equivariant-multiplicative structures on

gerbes over Lie groups G. Some preliminary notations will be needed. First we recall that

the sequence {Gp} of powers of G forms a simplicial manifold. Here we only need one

aspect of this assertion, namely that there are “face maps” ∆p
k : Gp → Gp−1 for all p > 1

and 0 ≤ k ≤ p, namely

∆p
k(g1, . . . , gp) :=











(g2, . . . , gp) for k = 0

(g1, . . . , gk−1gk, . . . , gp) for 1 ≤ k < p

(g1, . . . , gp−1) for k = p,

and that these face maps satisfy the simplicial relations

∆p−1
h ◦ ∆p

k = ∆p−1
k−1 ◦ ∆p

h (6.1)

for all h < k. Such a structure is also called an “incomplete” simplicial manifold. Notice

that the group multiplication m : G × G → G and the projections p1,2 : G ×G → G can

be rediscovered as ∆2
1 = m, ∆2

2 = p1 and ∆2
0 = p2. We will sometimes suppress the upper

index of ∆p
k. A differential form ω ∈ Λn(G2) will be called multiplicative, if

∆∗
0ω + ∆∗

2ω = ∆∗
3ω + ∆∗

1ω. (6.2)

In this case we denote the n-form (6.2) by ω∆.
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Multiplicative structures are considered for pairs (G, ω) composed of a gerbe G over G

with curvature H and a multiplicative 2-form ω ∈ Λ2(G2) satisfying

m∗H = p∗1H + p∗2H + dω. (6.3)

Our main example will involve the pair (Gk, ωk) composed of a gerbe with the curvature

3-form Hk of eq. (1.1) and of the 2-form ωk of eq. (1.5). In this case, the identity (6.3) is

shown by eq. (2.1) and ωk is multiplicative due to eq. (3.4). A multiplicative structure [18]

on (G, ω) is a 1-isomorphism

M : m∗G → p∗1G ⊗ p∗2G ⊗ Iω (6.4)

of gerbes over G2 and a 2-isomorphism

α : (id ⊗ ∆∗
0M⊗ id) ◦ ∆∗

2M ⇒ (∆∗
3M⊗ id ⊗ id) ◦ ∆1M (6.5)

between 1-isomorphisms of gerbes over G3 which satisfies a natural pentagon axiom over

G4. The condition that ω is multiplicative is required for the existence of α. In the par-

ticular case of the pair (Gk, ωk), the isomorphism M is the isomorphism (2.3) in section 2.

Two multiplicative gerbes (Ga,Ma, αa) and (Gb,Mb, αb) are equivalent, if there exists an

isomorphism B : Ga → Gb and a 2-isomorphism

β : (p∗1B ⊗ p∗2B ⊗ id) ◦Ma ⇒ Mb ◦m∗B (6.6)

which is compatible with αa and αb in a certain way [18]. Equivalent multiplicative gerbes

have the same curvature 3-form H and the same multiplicative 2-form ω.

Next we combine a multiplicative structure on a gerbe G with an equivariant

structure. In general, if a discrete group Z acts smoothly on the left on a manifold M

over which a gerbe G is defined, a Z-equivariant structure on G [26] consists of a collection

of isomorphisms

Az : G → zG,

where zG := (z−1)∗G, and a collection of 2-isomorphisms

ϕz1,z2 : z1Az2 ◦ Az1 ⇒ Az1z2

such that the diagram

z1z2Az3 ◦ z1Az2 ◦ Az1

z1ϕz2,z3◦id

��

id◦ϕz1,z2
+3 z1z2Az3 ◦ Az1z2

ϕz1z2,z3

��

z1Az2z3 ◦ Az1 ϕz1,z2z3

+3 Az1z2z3

(6.7)

of 2-isomorphisms is commutative. We need the following facts:

1. Suppose that we have two manifolds M1 and M2 with smooth left actions of discrete

groups Z1 and Z2, respectively. Suppose further that ϕ : Z → Z ′ is a group homo-

morphism and that f : M1 →M2 is a smooth map that exchanges the actions in the

sense that

f(zx) = ϕ(z)f(x) (6.8)
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for all x ∈M1 and z ∈ Z1. Then, the pullback f∗G of a Z2-equivariant bundle gerbe

over M2 carries a canonical Z1-equivariant structure.

2. In the case when Z acts freely and properly on M , the quotient M/Z is a smooth man-

ifold and the projection p : M →M/Z is a surjective submersion. The pullback p∗G

of a gerbe G over M/Z carries a canonical Z-equivariant structure. Conversely, every

gerbe G over M with a Z-equivariant structure defines a “descent” gerbe DesZ(G) over

M/Z. These two procedures are inverse to each other in an appropriate sense, see [26].

3. Suppose that we have two smooth manifolds M1 and M2, both with free and proper

left actions of discrete groups Z1 and Z2, respectively. Given a group homomorphism

ϕ : Z1 → Z2 and a smooth map f : M1 → M2 satisfying (6.8), there exists a unique

map g : M1/Z1 →M2/Z2 between the quotients such that p2 ◦ f = g ◦ p1. Then,

DesZ1 ◦ f
∗ = g∗ ◦ DesZ2 . (6.9)

Thus, descent is compatible with pullbacks. It is also compatible with tensor

products.

We further need the definition of Z-equivariant isomorphisms and 2-isomorphisms. For

an isomorphism being Z-equivariant is not a property but additional structure. A Z-

equivariant structure on an isomorphism B : Ga → Gb between gerbes with Z-equivariant

structures (Aa
z , ϕ

a
z1,z2) and (Ab

z, ϕ
b
z1,z2) is a 2-isomorphism

ηz : zB ◦ Aa
z ⇒ Ab

z ◦ B

such that the diagram

z1z2B ◦ z1A
a
z2 ◦ A

a
z1

z1ηz2◦idAa
z1

��

idz1z2B
◦ϕa

z1,z2
+3 z1z2B ◦ Aa

z1z2

ηz1z2

��

z1A
b
z2 ◦ z1B ◦ Aa

z1

id
z1A

b
z2

◦ηz1

��

z1A
b
z2 ◦ A

b
z1 ◦ B ϕb

z1,z2
◦idB

+3 Ab
z1z2 ◦ B

(6.10)

of 2-isomorphisms is commutative. Finally, a Z-equivariant 2-isomorphism φ : B ⇒ B′

between isomorphisms B and B′ with Z-equivariant structures ηz and η′z, respectively, is

called Z-equivariant, if the diagram

zB ◦ Aa
z

zφ◦idAa
z

��

ηz
+3 Ab

z ◦ B

id
Ab

z
◦φ

��

zB′ ◦ Aa
z η′z

+3 Ab
z ◦ B

′

(6.11)

– 16 –



J
H
E
P
0
9
(
2
0
0
9
)
0
7
3

of 2-isomorphisms is commutative. In case of a free and proper group action, equivariant

isomorphisms and 2-isomorphisms descent to the quotient in a way compatible with

pullbacks and tensor products.

In order to combine a multiplicative structure with an equivariant structure, the action

ρ : Z×G→ G has to be compatible with the group multiplication of G in the sense that ρ

is a group homomorphism. We will call such group actions “multiplicative”. Multiplicative

groups actions have the following two properties: if we let Zp act component-wise on Gp,

the face maps ∆p
k : Gp+1 → Gp introduced above satisfy condition (6.8), where the group

homomorphism ϕ : Zp → Zp−1 is given by the face map ∆p
k of the group Z. In other

words, there are commutative diagrams

Gp
z

//

∆p
k

��

Gp

∆p
k

��

Gp−1
∆p

k
(z)

// Gp−1

(6.12)

for all p and 0 ≤ k ≤ p. This property of the action ρ guarantees, for instance, that if G is

a Z-equivariant gerbe over G, the pullbacks m∗G, p∗1G and p∗2G are Z2-equivariant gerbes

over G2. The second property of a multiplicative group action is that in case of a free

and proper group action, in which the quotient G/Z is again a Lie group, the projection

p : G → G/Z is a Lie group homomorphism. Most importantly, all of this holds for Z a

subgroup of the center of G acting by multiplication.

Given a multiplicative group action, equivariant multiplicative structures are con-

sidered for pairs (G, ω) of a gerbe G over G and a multiplicative, Z2-invariant 2-form

ω ∈ Λ2(G2) satisfying (6.3) as before. Notice that such 2-forms define Z2-equivariant

trivial bundle gerbes Iω. We say that a Z-multiplicative structure on (G, ω) is a Z-

equivariant structure (Az, ϕz1,z2) on G, a Z2-equivariant isomorphism (M, ηz1,z2) like

in (6.4) and a Z3-equivariant 2-isomorphism α like in (6.5), satisfying the pentagon axiom.

Two Z-multiplicative gerbes are equivalent, if there exists a Z-equivariant isomorphism

(B, κz) : Ga → Gb and a Z2-equivariant 2-isomorphism β like in (6.6), satisfying the same

compatibility condition.

The purpose of Z-multiplicative gerbes over G is that they correspond, for a free and

proper group action, to multiplicative gerbes over the quotient G′ = G/Z. This follows from

the properties of equivariant structures listed above: the Z-equivariant gerbe G determines

a bundle gerbe G′ := Des(G) over G′. Eq. (6.9) implies that m∗
12G

′ = Des(m∗G), and

similarly, p∗iG
′ = Des(p∗iG) for i = 1, 2. Further, the Z2-equivariant, multiplicative 2-form

ω determines a 2-form ω′ ∈ Λ2(G′2), and this 2-form is again multiplicative. Thus, the

Z2-equivariant 1-isomorphism M determines a 1-isomorphism

M′ := Des(M) : m∗G′ → p∗1G
′ ⊗ p∗2G

′ ⊗ Iω′ .

In the same way, the Z3-equivariant 2-isomorphism α determines a 2-isomorphism α′ as

required for a multiplicative gerbe over G′. This 2-isomorphism α′ automatically satisfies

the pentagon axiom. Thus every Z-multiplicative gerbe over G determines a multiplica-

tive gerbe over the the quotient G′. In the same way, equivalent Z-multiplicative gerbes

determine equivalent multiplicative gerbes over G′.

– 17 –



J
H
E
P
0
9
(
2
0
0
9
)
0
7
3

Summarizing, if Z is a discrete group acting on the left on a Lie group G in a smooth,

multiplicative and free and proper way, we have a bijection between equivalence classes of

Z-multiplicative gerbes over G and equivalence classes of multiplicative gerbes over G/Z.

The goal of the following sections is to classify Z-multiplicative structures on the pairs

(Gk, ωk) over all compact, simple and simply-connected Lie groups G, for Z a subgroup of

the center of G.

7 Local description of equivariant multiplicative gerbes

In this section we connect the geometrical definition of equivariant multiplicative gerbes to

the cohomological language used in the first five sections. The cohomology theory that is

most appropriate for gerbes, i.e. hermitian bundle gerbes with unitary connection, is the

(real) Deligne cohomology. We shall recall some basic facts about it [6, 26, 29].

Let us first consider a general manifold M . We denote by U the sheaf of smooth U(1)-

valued functions, and by Λq the sheaf of q-forms. For O an open cover of M , the Deligne

cohomology H
n(O,D(2)) is the cohomology of the complex

0 // A0(O)
D0

// A1(O)
D1

// A2(O)
D2

// A3(O) // . . .

with the cochain groups

A0(O) = C0(O,U),

A1(O) = C0(O,Λ1) ⊕C1(O,U),

A2(O) = C0(O,Λ2) ⊕C1(O,Λ1) ⊕ C2(O,U),

A3(O) = C1(O,Λ2) ⊕C2(O,Λ1) ⊕ C3(O,U).

Here, Cℓ(O,S) denotes the ℓth Čech cochain group of the open cover O with values in a

sheaf S of Abelian groups. The differentials are

D0(fi) =
(

−if−1
i dfi , f

−1
j · fi

)

,

D1(Πi, χij) =
(

dΠi , −iχ−1
ij dχij + Πj − Πi , χ

−1
jk · χik · χ

−1
ij

)

,

D2(Bi, Aij , gijk) =
(

dAij−Bj+Bi , −ig−1
ijkdgijk+Ajk−Aik+Aij , g

−1
jkl · gikl · g

−1
ijl · gijk

)

.

A refinement r : O′ → O of open covers induces the restriction maps H
n(O,D(2)) →

H
n(O′,D(2)) turning the Deligne cohomology groups into a direct system of groups. Its

direct limit is denoted H
n(M,D(2)).

Let us briefly recall what local data of gerbes, isomorphisms and 2-isomorphisms are,

for the details we refer the reader to [26]. For a given gerbe G over M , one can choose

a sufficiently “good” open cover O of M that permits to extract a cocycle c ∈ A2(O),

D2c = 0, in a certain way. Suppose that two gerbes G1 and G2 are given, and O1 and O2 are

open covers that permit to extract cocycles c1 and c2. Suppose further that A : G1 → G2

is an isomorphism. Then one can choose a common refinement O of O1 and O2 that

permits to extract a cochain b ∈ A1(O) such that c2 = c1 + D1b. The cochains for
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isomorphisms add under the composition of these isomorphisms. Finally, if a 2-isomorphism

ϕ : A1 ⇒ A2 is given and b1 and b2 are cochains for A1 and A2, respectively, for a

suitable open cover O, one can always extract a cochain a ∈ A0(O) such that b2 = b1 +

D0a. The cochains for 2-isomorphisms add under both the horizontal and the vertical

composition of 2-isomorphisms. Conversely, one can reconstruct gerbes, isomorphisms and

2-isomorphisms from given local data, and the two procedures are inverse to each other in

an appropriate sense. In particular, they establish a bijection between H
2(M,D(2)) and

the set of isomorphism classes of gerbes over M .

In the following we want to apply the procedure of extraction of local data to an

equivariant multiplicative gerbe. This requires a careful discussion of open covers Op =

{Opi } i∈Ip of powers Gp of a Lie group G. As the definition of a Z-multiplicative gerbe

over G involves pullbacks along the face maps ∆p
k : Gp → Gp−1 and along the action

ρ : Z ×G→ G, we need the open covers to be compatible with all these maps.

We say that a sequence {Op} of open covers of Gp is “simplicial”, if the sequence {Ip}

of index sets forms an incomplete simplicial set (i.e. there are face maps ∆p
k : Ip → Ip−1

satisfying (6.1)), such that

∆p
k(O

p
i ) ⊂ Op−1

∆p
k
(i)

(7.1)

for all p > 1, all 0 ≤ k ≤ p and all i ∈ Ip. For a simplicial sequence of open covers one has

induced chain maps

(

∆p
k

)∗
: Cℓ(Op−1,S) → Cℓ(Op,S) defined by

(

(∆p
l )

∗f
)

i
:= (∆p

k)∗(f∆p
k
(i)), (7.2)

satisfying the co-simplicial relations

(

∆p
k

)∗
◦
(

∆p−1
h

)∗

= (∆p
h)∗ ◦ (∆p

k−1)∗ (7.3)

for h < k. We further say that a sequence {Op} of open covers is “Z-equivariant”, if each

cover Op is Zp-equivariant in the sense that its index set Ip carries an action of Zp in such

a way that

z(Opi ) ⊂ Opzi (7.4)

for all z ∈ Zp and i ∈ Ip. For a Z-equivariant sequence of open covers one has an induced

action of Zp on Cℓ(Op,S) by chain maps, namely

z : Cℓ(Op,S) → Cℓ(Op,S) defined by (zf)i := (z−1)∗(fz−1(i)) (7.5)

for z ∈ Zp and f ∈ Cℓ(Op,S). Combining both notions, we say that a sequence {Op}

of open covers is “Z-simplicial”, if it is both simplicial and Z-equivariant, and if the face

maps ∆p
k : Ip → Ip−1 and the action of Zp on Ip commute in the sense that all diagrams

Ip
z

//

∆p
k

��

Ip

∆p
k

��

Ip−1
∆p

k
(z)

// Ip−1

(7.6)
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are commutative (cf. diagram (6.12)). This compatibility condition ensures that the in-

duced maps (7.2) and (7.5) on the Čech cohomology groups commute in the same way, i.e.

z ◦ (∆p
k)∗ = (∆p

k)∗ ◦ ∆p
k(z). (7.7)

In the following we shall use Z-simplicial sequences of open covers to extract local

data of Z-multiplicative gerbes. We have included an appendix (after section 10) in which

we prove the following. Suppose that a finite Abelian group Z acts on G in a smooth,

multiplicative, free and proper way, and assume that {Vp} is any sequence of open covers

Vp of Gp. Then, there exists a Z-simplicial sequence {Op} of open covers, such that each

Op is a refinement of Vp. As a consequence, one can choose open covers Vp separately for

all p, in such a way that they permit to extract local data of any given combination of gerbes

and isomorphisms. Since each open cover Op of a Z-simplicial refinement is finer than Vp,

also the new covers Op permit to extract local data of the given structure. We can hence

assume that one can always choose sufficiently fine Z-simplicial sequences of open covers.

For a given Z-simplicial sequence {Op} of open covers, we consider the groups

Kp,q,n := Map((Zp)q, An(Op))

with elements denoted like xz1,...,zq ∈ An(Op), for z1, . . . , zq elements in Zp. On the groups

Kp,q,n we find three operators: the first is the Deligne differential

Dp,q,n : Kp,q,n → Kp,q,n+1 with (Dp,q,n(x))z1,...,zq := Dn(xz1,...,zq).

The second is the “group cohomology differential of the group Zp”

δp,q,n :Kp,q,n→Kp,q+1,n with (δp,q,n(x))z0,...,zq :=z0xz1,...,zq − xz0z1,...,zq +. . .± xz0,...,zq−1 ,

whose definition uses the lift (7.5) of the Zp-action to the Deligne cochain group An(Op).

The third operator we have is the simplicial operator

∆p,q,n : Kp,q,n→Kp+1,q,n with (∆p,q,n(x))z1,...,zq :=

p+1
∑

k=0

(−1)k
(

∆p+1
k

)∗(

x∆p
k
z1,...,∆

p
k
zq

)

,

(7.8)

whose definition uses the lift (7.2) of the face maps to the Deligne cochain groups. Notice

that in (7.8) z1, . . . , zq are elements of Zp+1 and ∆p
k : Zp+1 → Zp is the face map of the

group Z. Due to the co-simplicial relations (7.3), we have ∆p+1,q,n ◦ ∆p,q,n = 0. The

Deligne differential D commutes with pullbacks, and thus with both operators δ and ∆.

Further, the differentials δ and ∆ commute due to (7.7). This endows Kp,q,n with the

structure of a triple complex.

Now we are prepared to list local data of a Z-equivariant multiplicative gerbe over G.

We chose a Z-simplicial sequence {Op} of open covers that permit to extract local data

of G and all involved isomorphisms and 2-isomorphisms. Then, the Z-equivariant gerbe

(G,Az , ϕz1,z2) has local data c ∈ K1,0,2, b ∈ K1,1,1 and a ∈ K1,2,0 satisfying the relations

D1,0,2c = 0 , δ1,0,2c = D1,1,1b , δ1,1,1b = −D1,2,0a and δ1,2,0a = 0,
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of which the last one is the commutativity of diagram (6.7), see [26]. The Z2-equivariant

isomorphism (M, ηz1,z2) has local data β ∈ K2,0,1 and φ ∈ K2,1,0 satisfying

∆1,0,2c+ ω = D2,0,1β, δ2,0,1β = ∆1,1,1b−D2,1,0φ and ∆1,2,0a+ δ2,1,0φ = 0, (7.9)

where the third is the commutativity of diagram (6.10), and the 2-form ω is regarded as

an element in A2(O2) corresponding to the trivial gerbe Iω. Finally, the Z3-equivariant

2-isomorphism α has local data d ∈ K3,0,0 such that

∆2,0,1β = D3,0,0d, ∆2,1,0φ+ δ3,0,0d = 0 and ∆3,0,0d = 0.

where the second is the commutativity of diagram (6.11) and the third is the pentagon

axiom for α.

We also need to relate local data of two equivalent Z-multiplicative gerbes. Suppose

the equivalence is expressed by a Z-equivariant isomorphism (B, κz) and a Z2-equivariant 2-

isomorphism β as discussed in section 6. Suppose further that we have chosen a Z-simplicial

sequence of open covers that are fine enough to extract local data of all involved gerbes and

isomorphisms. Then, the Z-equivariant isomorphism (B, κz) has local data r ∈ K1,0,1 and

s ∈ K1,1,0, and the Z2-equivariant 2-isomorphism β has local data t ∈ K2,0,0. These relate

local data (c1, b1, a1, β1, φ1, d1) and (c2, b2, a2, β2, φ2, d2) of the Z-multiplicative gerbes by

c2 = c1 +D1,0,1r, b2 = b1 + δ1,0,1r +D1,1,0s and a2 = a1 − δ2,0,1s, (7.10)

the last equation expressing the equivariance of (B, κz), and

β2 = β1 + ∆1,0,1r+D2,0,0t, φ2 = φ1 + ∆1,1,0s− δ2,0,0t, and d2 = d1 −∆2,0,0t. (7.11)

We remark that the local data of a Z-multiplicative gerbe does not automatically define

a cocycle in the total complex of the triple complex Kp,q,n, due to the appearance of the

2-form ω in (7.9). In [18] the 2-form has been included into the complex, but here this will

not be necessary.

8 Obstructions against equivariant multiplicative structures

Let G be a 2-connected Lie group, and let Z be a finite group acting smoothly and mul-

tiplicatively on G. Let G be a gerbe over G of curvature H, and let ω ∈ Λ2(G2) be a

multiplicative 2-form such that identity (6.3) is satisfied.

Due to the 2-connectedness of G, all the elements of a Z-multiplicative structure on G

exist: the isomorphisms Az of the equivariant structure on G and the isomorphism M over

G2 exist because they are isomorphisms between gerbes of equal curvature, and such gerbes

are necessarily isomorphic. The 2-isomorphisms ϕz1,z2 of the equivariant structure on G,

the 2-isomorphisms ηz1,z2 of the equivariant structure on M, and the 2-isomorphism α of

the multiplicative structure exist because every two isomorphisms between fixed gerbes are

necessarily 2-isomorphic over simply connected spaces. Not automatically guaranteed are

the various conditions these 2-isomorphisms have to satisfy, namely the commutativity of

the diagrams (6.7), (6.10), (6.11) and the pentagon axiom for α.
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In order to handle all these conditions, let us extract local data for the structure

that we have chosen. We choose an appropriate Z-simplicial sequence {Op} as discussed

in section 7. According to the discussion there, we obtain local data (c, b, a) for the Z-

equivariant gerbe G, local data (β, φ) for the Z2-equivariant isomorphism M and local data

d for the 2-isomorphism α. All relations are satisfied except

δ1,2,0a = 0, ∆1,2,0a+ δ2,1,0φ = 0, ∆2,1,0φ+ δ3,0,0d = 0 and ∆3,0,0d = 0, (8.1)

corresponding to the above-mentioned diagrams and the pentagon axiom, respectively.

These four equations are the cocycle condition for the 3-cochain (a, φ, d) in the total com-

plex of the double complex Kp,q,0 with differentials ∆p,q,0 and δp,q,0. In the following we

suppress the third index 0.

In the generic case our chosen data does not satisfy the conditions (8.1), and we define

u0 := δ1,2a ∈ K1,3 u1 := ∆1,2a+ δ1,2φ ∈ K2,2

u2 := ∆2,1φ− δ3,0d ∈ K3,1 u3 := ∆3,0d ∈ K4,0.

Since this is the coboundary of (a, φ, d), the 4-cochain u := (u0, u1, u2, u3) is a 4-cocycle.

By construction, D0ui = 0 for all i = 0, . . . , 3. Now we recall the identification

kerD0|A0(Op)
∼= U(1) (8.2)

due to the fact that all manifolds Gp are connected. We have thus induced identifications

Kp,q,0 ⊃ kerDp,q,0
∼= Cq(Zp,U(1)), (8.3)

where Cq(Zp,U(1)) is the q-th cochain group of the group Zp with coefficients in U(1),

with Zp acting trivially on the coefficients. Unlike in section 1–5, we shall use below the

additive notation rather than the multiplicative one for the U(1)-valued cochains. Under

the identification (8.3), the remaining differentials δp,q and ∆p,q are

δp,q : Cq(Zp,U(1)) → Cq+1(Zp,U(1)) and ∆p,q : Cq(Zp,U(1)) → Cq(Zp+1,U(1)),

with δp,q the usual group cohomology differential for the group Zp. The following identities

are straightforward to check:

1. δp,0 = 0, since the action of Zp on the coefficients U(1) is trivial,

2. ∆p,0 : U(1) → U(1) : z 7→

{

1 for p even,

z for p odd,

3. ∆p,1 = δ1,p under the set-theoretic equality C1(Zp,U(1)) = Cp(Z,U(1)),

4. ∆p,pu = 0 if and only if δp,pu = 0.

The total cohomology of the double complex Cq(Zp,U(1)) is denoted H
n
0 (Z,U(1)), where

the 0 indicates that our double complex starts at q = 0 (but at p = 1). The cocycle

– 22 –



J
H
E
P
0
9
(
2
0
0
9
)
0
7
3

u := (u0, . . . , u3) we have obtained from the pair (G, ω) as described above is now a 4-

cocycle and defines a class [u] ∈ H
4
0(Z,U(1)). The cocycle conditions are

δ1,3u0 = 0 , ∆1,3u0 = δ2,2u1 , ∆2,2u1 = δ3,1u2 and ∆3,1u2 = 0. (8.4)

Before we proceed investigating more closely the class [u] ∈ H
4
0(Z,U(1)), let us make

two general claims about it. The first is that [u] is uniquely determined by the pair (G, ω)

of the gerbe G and the 2-form ω. The case that, for a fixed choice of 1-isomorphisms and

2-isomorphisms, a different Z-simplicial open cover has been used can be reduced to the

case that one cover refines the other. Then, local data for the finer cover can be chosen as

the restriction of the local data for the coarser one. In this case, the identification (8.2)

produces the same U(1)-numbers and hence the same cocycle u. Presume further that

we either had chosen a different multiplicative or equivariant structure on G, or chosen

different local data. Due to the 2-connectedness of G one can then find local data (r, s, t)

of an equivalence between Z-multiplicative gerbes, relating local data (c, b, a, β, φ, d) to

other local data (c′, b′, a′, β′, φ′, d′) by

c2 = c1 +D1,0,1r , b2 = b1 + δ1,0,1r +D1,1,0s and β2 = β1 + ∆1,0,1r +D2,0,0t.

These are eqs. (7.10) and (7.11) minus the equations corresponding to the commutativity

of diagrams of 2-isomorphisms, which are not automatically guaranteed. Anyway, it is now

easy to see that

x := a′ − a+ δ1,1s , y := φ′ − φ− ∆1,1s+ δ2,0t and z := d′ − d+ ∆2,0t

defines a 3-cochain (x, y, z) in the total complex of Cq(Zp,U(1)), whose coboundary is

u′ − u. Thus, the class [u] is well-defined.

The second claim about the class [u] is that it is the obstruction against the existence of

a Z-multiplicative structure for the pair (G, ω), i.e. there exists a Z-multiplicative structure

if and only if [u] = 0. The “only if” part is trivial: if there is a Z-multiplicative structure

on (G, ω), the corresponding cocycle u is identically zero, since all the relations (8.1) are

satisfied. Conversely, suppose (x, y, z) is a 3-cochain whose coboundary is (u0, . . . , u4).

Then, the new local data (c, b, a− x, ρ, β, φ− y, d− z) for a Z-multiplicative gerbe satisfies

all required conditions. Reconstructing the gerbe, isomorphisms and 2-isomorphisms from

this local data yields a Z-multiplicative gerbe with the underlying gerbe isomorphic to

G and with the 2-form ω. The latter isomorphism allows to carry the Z-multiplicative

structure to G.

Now we analyze the obstruction class [u] ∈ H
4
0(Z,U(1)) in detail. As the cocycle

conditions (8.4) show, the obstructions split into one obstruction u3 ∈ U(1) and a class

[(u0, u1, u2)] in H
4(Z,U(1)), the total cohomology of the double complex Cq(Zp,U(1)) with

the (q = 0)-row omitted. Since the differential ∆3,0 is the identity, we can always find a

cohomologous 4-cocycle with u3 = 0. And because the differential δ3,0 is the zero map,

the class [(u0, u1, u2)] ∈ H
4(Z,U(1)) is trivial if and only if the class [u] ∈ H

4
0(Z,U(1))

is trivial. Summarizing, there is one well-defined obstruction [(u0, u1, u2)] ∈ H
4(Z,U(1))

against a Z-multiplicative structure on (G, ω).
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The obstruction class [u] can further be treated as follows. Since δ1,3u0 = 0, we

have a class [u0] ∈ H3(Z,U(1)). Suppose this class is trivial and that x ∈ C2(Z,U(1)) is

such that δ1,2x = u0. If we now change u by the coboundary of (x, 0), we obtain a new

representative ux := (0, ux1 , u2) with ux1 := u1 − ∆1,2x, in which δ2,2u
x
1 = 0. It defines a

class [ux1 ] ∈ H2(Z2,U(1)). Note that this class depends on the choice of x. Now suppose

that the class [ux1 ] is trivial, i.e. there exists y ∈ C1(Z2,U(1)) such that δ2,1y = ux1 . We

change ux be the coboundary of (0, y) and obtain a new representative ux,y = (0, 0, uy2)

with uy2 := u2 − ∆2,1y. The cocycle conditions are now δ3,1u
y
2 = 0 and ∆3,1u

y
2 = 0. This

relations means that uy2 is a character on Z3 that is also a 3-cocycle if viewed as a 3-chain

on Z. A short computation shows that (uy2)(z,z′,z′′) = χ(z) + χ′(z′′), where χ and χ′ are

characters on Z. Upon setting v(z, z
′) = −χ(z) + χ′(z′), one checks that v ∈ C1(Z2,U(1))

satisfies ∆2,1v = uy2 and δ2,1v = 0. Altogether, this implies that the cocycle u = (u0, u1, u2)

is a coboundary of (x, y+ v). Thus, the obstruction [u] ∈ H
4(Z,U(1)) is trivial if, and only

if, successively, the class of u0 in H3(Z,U(1)) and the class of ux1 in H2(Z2,U(1)) vanish.

Tracing back through the extraction of local data, we see that u0 is the error in the

commutativity of the diagram (6.7) for the 2-isomorphism ϕz1,z2 of equivariant structures.

Thus, its class [u0] ∈ H3(Z,U(1)) is the well-known obstruction from [22, 26] to the

existence of the descent gerbe G′ on G′ = G/Z. Further, once an equivariant structure

(the local datum x) is chosen, we see that ux1 is the error in the commutativity of the

diagram which is needed to make (M, ηz1,z2) a Z2-equivariant isomorphism. Thus, the

class [ux1 ] ∈ H2(Z2,U(1)) obstructs the existence of the descent isomorphism M′ in the

multiplicative structure on the gerbe G′.

For the particular case of Gk the basic gerbe over a compact, simple and simply-

connected Lie group G, and ωk the 2-form (1.5), we have shown in section 5, that the class

κ = [ux1 ] is trivial if and only if the FGK cocycle c associated to G′
k is trivial (note that the

groups G and G′ = G/Z play here the role of G̃ and G = G̃/Z from the first sections of the

paper where the discussion was centered on the gerbes over non-simply connected groups).

Thus, the calculation of the FGK cocycle carried out in section 4 identifies precisely the

the situations for which G′
k is a multiplicative gerbe.

9 Uniqueness of multiplicative structures

In this section we address the question if there are inequivalent choices of Z-multiplicative

structures on a pair (G, ω) of a gerbe G over a 2-connected Lie group G and a compatible

2-form ω. First we claim that equivalence classes of Z-multiplicative structures on (G, ω),

if they exist, are parameterized by H
3(Z,U(1)).

Let us first see how H
3(Z,U(1)) acts on equivalence classes of Z-multiplicative gerbes.

A 3-cocycle consists of cochains x ∈ C2(Z,U(1)) and y ∈ C1(Z2,U(1)) such that

δ1,2x = 0 , ∆1,2x+ δ2,1y = 0 and ∆2,1y = 0.

If (c, b, a, β, φ, d) is local data for a Z-multiplicative gerbe then (c, b, a + x, β, φ + y, d) is

local data for another one. Suppose that (x′, y′) is a cohomologous cocycle, i.e. there exists

s ∈ C1(Z,U(1)) such that x′ = x + δ1,1s and y′ = y + ∆1,1s. Then, (0, s, 0) is local data
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for an equivalence between (c, b, a + x, β, φ + y, d) and (c, b, a + x′, β, φ + y′, d). Thus, the

action of H
3(Z,U(1)) on equivalence classes of Z-multiplicative gerbes is well-defined. It

is also free: whenever (c, b, a, β, φ, d) and (c, b, a + x, β, φ + y, d) are equivalent local data

for an equivalence (r, s, t), one can choose r = t = 0 and verify that the coboundary of s is

(x, y). It remains to show that the action is transitive.

If (c, b, a, β, φ, d) and (c′, b′, a′, β′, φ′, d′) are local data for Z-multiplicative gerbes

over G, with c and c′ local data for the fixed gerbe G, one can always find local data

(r, s, t) of an equivalence that Change the second to (c, b, a′′, β, φ′′, d′′), as mentioned in

section 8. One can also arrange t such that d′′ = d, due to the fact that multiplicative

structures on G are unique [18]. Defining x := a′′ − a and y := φ′′ − φ, we obtain a class

[(x, y)] ∈ H
3(Z,U(1)) whose action connects the two sets of local data. Thus, the action

of H
3(Z,U(1)) is transitive.

We have shown so far that H
3(Z,U(1)) parameterizes inequivalent Z-multiplicative

structures on a gerbe G over a 2-connected Lie group G. Now we calculate H
3(Z,U(1)) for

the groups Z = ZN and Z = Z
2
2 that appear as subgroups of centers of compact, simple and

simply-connected Lie groups. We first discuss the case of Z = ZN , for which we consider a

3-cocycle (x, y). Since H2(ZN ,U(1)) = 0 according to (2.9), we can go to a representative

with x = 0. Then, δ2,1y = 0 and ∆2,1y = 0, i.e. y ∈ C1(Z2,U(1)) is a character on Z2 that

is also a 2-cocycle when viewed as a 2-chain on Z. A simple calculation shows that y = 0.

Thus, H
3(ZN ,U(1)) = 0. We continue with Z = Z

2
2. Here, H2(Z,U(1)) = Z2, see (2.9).

One can represent the non-trivial class explicitly. Under the embedding (5.6),

Hom(Z2,U(1)) ∼= Hom(Z2 ⊗ Z2,U(1)) →֒ H2(Z2
2,U(1)),

the non-trivial group homomorphism ζ : Z2 → U(1) maps to the non-trivial class repre-

sented by χ(z1,z2),(z′1,z
′
2)

:= ζ(z1z
′
2). We can thus check explicitly that

(∆1,2χ)((z1,z2),(z̃1,z̃2)),((z′1,z′2),(z̃′1,z̃′2)) = 0.

It follows as before that y = 0. Consequently, H
3(Z2

2,U(1)) = Z2. This is just the well-

known choice of the Z
2
2-equivariant structure on the gerbe Gk over Spin(4r) [22, 26].

Summarizing, once an equivariant structure on the gerbe Gk over G is fixed, the mul-

tiplicative structure on the descent gerbe G′
k is, if it exists, unique up to isomorphism.

10 Conclusions

We have studied obstructions to the existence of multiplicative structures on (bundle)

gerbes Gk over simple compact groups G, i.e. on gerbes with connection of curvature Hk

given by eq. (1.1). This was done by analyzing the multiplicative gerbes over the universal

covering groups G̃ equivariant w.r.t. the deck action of the fundamental group π1(G) = Z.

We have shown that there are two obstructions to the existence of such equivariant mul-

tiplicative gerbes over G̃. The first one lies in the cohomology groups H3(Z,U(1)). Its

triviality assures the existence of the gerbe Gk over the quotient group G = G̃/Z. Such

a gerbe determines unambiguously the Feynman amplitudes in the group G WZW theory

over closed oriented surfaces. Given the gerbe Gk over G, the second obstruction lies in
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G̃ Center Z
WZW

constraints on k

CS constraints

on k

SU(r) Zr Z = ZN with N | n 2N | kr(r − 1) 2N2 | kr(r − 1)

Spin(2r + 1) Z2 Z = Z2 − 2 | k

Spin(4r + 2) Z4
Z = Z2

Z = Z4

−

2 | k

2 | k

8 | k

Spin(4r) Z2 × Z2

Z = Z2 × {0}

Z = {0} × Z2

Z = {(0, 0), (1, 1)}

Z = Z2 × Z2

2 | kr

−

2 | kr

2 | kr

4 | kr

2 | k

4 | kr

2 | k and 4 | kr

Sp(2r) Z2 Z = Z2 2 | kr 4 | kr

E6 Z3 Z = Z3 − 3 | k

E7 Z2 Z = Z2 2 | k 4 | k

Table 1. Constraints for integer values of k imposed by the consistency of, respectively, the WZW

and the CS theory with group G = G̃/Z.

the cohomology group H2(Z2,U(1)). Its triviality, equivalent to the triviality of the FGK

2-cocycle on the group Z2, guarantees the existence of the multiplicative structure on the

gerbe Gk. The gerbe Gk with such a structure determines unambiguously the Feynman

amplitudes in the group G CS theory over closed oriented 3-dimensional manifolds. We

made explicit the relation between the obstruction cohomology class in H2(Z2,U(1)) and

the FGK cocycle by relating both to Kreuzer-Schellekens bihomomorphisms. The con-

straints on the integer levels k imposed by the triviality of, respectively, the first obstruc-

tion or the first and the second one are collected in the table in figure 2. Over the groups

G = Spin(4r)/Z2
2 where there are two inequivalent gerbes Gk when kr is even, only one

of them admits multiplicative structure when kr is divisible by 4. For simplicity, we have

limited our geometric considerations to the case of simple compact groups. The extension

of our analysis to the case of non-simple compact groups, treated within the simple-current

orbifold algebraic approach in [9–12, 21] does not seem to present difficulties.

Multiplicative structures on gerbes over groups may be viewed as conditions of com-

patible equivariance of gerbes under the group actions on itself by the left and the right

multiplications. We shall develop elsewhere a theory of gerbes equivariant under actions

of continuous groups. Such gerbes permit the treatment of sigma models with the gauged

Wess-Zumino actions, e.g. the coset models of conformal field theory [30]. One of the

useful applications of the multiplicative structures on the gerbe Gk over group G is that

such a structure induces an equivariant structure w.r.t. the adjoint action of G on itself

(although the latter exists also when there is no multiplicative structure on Gk). A multi-

plicative structure on gerbes Gk induces also two Jandl structures on Gk (by the pullback

of 1-isomorphisms M of (6.4) from G2 to G via the maps g 7→ (g, g−1) or g 7→ (g−1, g).

Such structures are used to define the amplitudes of the WZW theory over unoriented sur-

faces [26, 31]. Finally, multiplicative structure on gerbes Gk play an important role in WZW

theory with defects permitting to define symmetric bi-branes [18, 32]. A detailed study of

such defects for non-simply connected groups is another problem left for future research.
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A Simplicial and equivariant refinements of sequences of open covers

Let G be a Lie group, and let Z be a finite Abelian group with a smooth, free, proper and

multiplicative action on G. Suppose that {Vp} is a sequence consisting of open covers Vp

of Gp for p > 0. In this appendix we show that there exists a Z-simplicial sequence {Op}

open covers in the sense of section 7, such that each Op is a refinement of Vp.

We have to introduce some simplicial techniques. Let P be the category whose objects

are non-negative integer numbers 0, 1, 2, . . . and whose set P(n,m) of morphisms from n

to m consists of maps θ : {0, . . . , n} → {0, . . . ,m} such that i < j implies θ(i) < θ(j). If

n > m, the set P(n,m) is empty. If n = m, it contains only the identity. Furthermore, for

any n > 0 the set P(n − 1, n) consists of (n + 1) elements, the “universal face maps” θk,

where 0 ≤ k ≤ n, defined by θk(i) := i for i < k and θk(i) := i+ 1 for i ≥ k. The category

P has the following well-known purpose. There is a bijection between incomplete simplicial

sets and contravariant functors X : P → Set, where Set denotes the category of sets. Given

such a functor, one obtains an incomplete simplicial set {Xp} by setting Xp := X(p) and

∆p
k := Xθk

:= X(θk) for θk ∈ P(p − 1, p) one of the universal face maps. Conversely, one

can write any θ ∈ P(n,m) as a composition of universal face maps and then invert this

construction. In particular, every group G defines a contravariant functor G : P → Set,

corresponding to the incomplete simplicial set {Gp} that we considered at the beginning of

section 6. An analogous statement is true in the category Man of smooth manifolds: the

contravariant functors M : P → Man are in bijection to incomplete simplicial manifolds.

First we recall a general construction of [33]. Let M : P → Man be a contravariant

functor and let {Vp} be a sequence of open covers, with Vp = {V p
j }j∈Jp an open cover of

the manifold Mp. In the following we use the notation

Pp :=

p
⋃

k=0

P(k, p) and J p :=

p
⋃

k=0

Jk.

A new open cover Op of Mp is defined as follows. Its index set is

Ip :=
{

i : Pp → J p | i(θ) ∈ Jk for θ ∈ P(k, p)
}

.

Its open sets are

Opi :=

p
⋂

k=0

⋂

θ∈P(k,p)

M−1
θ

(

V k
i(θ)

)

, (A.1)

where Mθ : Mp →Mk is the smooth map assigned to θ. These open sets cover Mp: for x ∈

Mp choose an index jθ ∈ Jk for each θ ∈ P(k, p) such that Mθ(x) ∈ V k
jθ

. The assignment

θ 7→ jθ defines an index i ∈ Ip, and it is clear that x ∈ Opi . Furthermore, Op is a refinement

of Vp: with r : Ip → Jp defined by r(i) := i(idp) we have immediately Opi ⊂ V p
r(i).

Next we define a contravariant functor I : P → Set with I(p) := Ip, turning the

sequence {Ip} of index sets into an incomplete simplicial set. For φ ∈ P(n,m), we let

Iφ : Im → In be defined by

Iφ(i)(θ) := i(φ ◦ θ) ∈ Jk
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for i ∈ Im and θ ∈ P(k, n). It is clear that this definition yields a functor. Now we have all

the structure of a simplicial sequence of open covers, and it remains to check condition (7.1).

In fact the more general relation

Mθ(O
p
i ) ⊂ OℓIθ(i) (A.2)

is true for all i ∈ Ip and θ ∈ P(ℓ, p), from which (7.1) follows by restricting to the universal

face maps θk ∈ P(p − 1, p). To show (A.2) we have to prove that Mθ(O
p
i ) is contained in

all the open sets M−1
φ (V k

Iθ(i)(φ)) that form the intersection (A.1). Indeed,

Mφ (Mθ(O
p
i )) = Mθ◦φ(Opi ) ⊂

p
⋂

k=0

⋂

ψ∈P(k,p)

Mθ◦φ

(

M−1
ψ (V k

i(ψ))
)

⊂ V k
i(θ◦φ) = V k

Iθ(i)(φ).

Here, the last inclusion follows by restricting to ψ = θ ◦ φ. Summarizing the construction

we took from [33], the sequence {Op} of open covers is simplicial, and each cover Op is a

refinement of the original open cover Vp.

Now we enhance the construction above by additional Z-equivariance. Since we have

a free and proper group action of a finite group it is clear that each open cover Vp has a

Zp-equivariant refinement. We can thus assume that such refinements are already chosen,

and that the sequence {Vp} is Z-equivariant. It remains to prove that applying the above

construction to a Z-equivariant sequence {Vp} yields a Z-simplicial sequence. To start

with, the action of Zp on the index set Ip is defined by

(z.i)(θ) := Zθ(z).i(θ), (A.3)

for θ ∈ P(k, p) and z ∈ Zp. Here Zθ : Zp → Zk is the map the functor Z : P → Set

associated to the group Z assigns to θ, and on the right hand side we have used the action

of Zθ(z) ∈ Zk on the index i(θ) ∈ Jk of the Zk-equivariant open cover Vp. Definition (A.3)

yields an action because Zθ is a group homomorphism; here we use that Z is Abelian. Notice

that the refinement maps r : Ip → Jp defined above are Zp-equivariant. Next we prove the

relation (7.4) for Z-equivariant covers: first we have

z(Opi ) ⊂

p
⋂

k=0

⋂

θ∈P(k,p)

z
(

M−1
θ (V k

i(θ))
)

⊂

p
⋂

k=0

⋂

θ∈P(k,p)

M−1
θ

(

Zθ(z)(V
k
i(θ))

)

,

for z ∈ Zk. Here we have used that the action is multiplicative; more specifically that

diagram (6.12) is commutative. Then it remains to check that

M−1
θ

(

Zθ(z)(V
k
i(θ))

)

⊂M−1
θ

(

V k
Zθ(z).i(θ)

)

= M−1
θ

(

V k
(z.i)(θ)

)

.

This shows that the sequence {Op} of open covers is Z-equivariant. It remains to check

the compatibility condition (7.6) between the face maps of {Ip} and the actions of Zp on

Ip. Indeed, for θ ∈ P(p − 1, p), φ ∈ P(k, p− 1), z ∈ Zp and i ∈ Ip we find

(Iθ(z.i))(φ) = (z.i)(θ ◦ φ) = Zθ◦φ(z).i(θ ◦ φ) = Zφ(Zθ(z)).(Iθ(i)(φ)) = (Zθ(z).Iθ(i))(φ),

showing the commutativity of (7.6). Summarizing, {Op} is a Z-simplicial sequence of

open covers.
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